罗斯数学训练营(The Ross Mathematics Program)起源于美国,由Arnold Ross教授于1957年创办,至今已有超过60年的历史。它与青年科学家数学计划(Program in Mathematics for Young Scientists,PROMYS)、斯坦福大学数学营(Stanford University Mathematics Camp,简称SUMaC)并称为美国三大顶尖数学训练营。
罗斯数学训练营的主要理念是“简单问题,深度思考”,旨在激发学生对数学知识的兴趣,培养辩证思维。整个训练营期间实行封闭式管理,没有电视、电脑、手机的干扰,目的是让学员集中心思探究和讨论数学。
罗斯数学训练营国际影响力深远,参加的学生高中毕业后大多被美国常青藤联盟大学以及其他世界名校录取,入选训练营对申请世界名校有很大帮助。
罗斯数学训练营·美国
罗斯数学训练营成立于美国,1964年正式迁入美国俄亥俄州立大学,并与著名的克雷数学研究所(Clay Mathematics Institute, 简称CMI)维持长期合作关系。
罗斯数学训练营·亚洲
2015年2月,罗斯训练营引入中国,罗斯数学训练营·亚洲成立。2016年暑期,第一届亚洲营在江苏南京举办。除了中国学生,第一届亚洲营招收了来自美国、英国、印度、韩国等地的优秀国际学生。
罗斯数学训练营·亚洲与罗斯数学训练营·美国属同质项目,两者采用相同的教学方式、教学内容、试题资料等。亚洲项目与美国项目采用相同的申请、录取方式及标准,由美国招生委员会统一负责。
*相比美国营,亚洲营在时间安排方面更适合中国申请者。美国营时间为每年6月至7月,而亚洲营时间为每年7月至8月,中国学生可在期末考试结束后利用暑假参加。
申请流程
|
每年都会有400多名来自世界各地的顶尖高中生申请,竞争非常激烈,每年不足1/3的学生获得录取。美国招生委员会将根据申请者所提交的材料对其进行严格筛选,重点考察申请者的数学能力、英语能力。由于竞争激烈,组委会将对部分申请者进行面试筛选,所以申请者可能会增加面试环节。
学习内容
罗斯训练营有且只有一个核心主题:数论(number theory) |
罗斯训练营长久以来一直秉持着“简单即复杂”的理念。许多高深的数学奥秘正是来自最基础的数学概念或者模型,所以每年都会围绕这个主题,进行全方位的深度的探索。学生需要发掘更加深层次的概念和联系;尽管在高中或大学课程中可能不会遇到这些主题,但是这样的经验会让学生受益匪浅。
教学安排
训练营由来自美国及其他世界名校的数学教授主持;每四名学员配备一名高级辅导员(美国及其他世界顶级名校数学专业大学生、研究生)和一名青年辅导员(罗斯往届优秀学员),并在他们的指导下研究数论问题。
营期全封闭训练,每周一至周五,每天一小时讲座;每周一、周三、周五,每天一小时问题研讨会;每周总共5小时讲座,3小时研讨会。课外时间,辅导员全程引导学员小组讨论,钻研问题。营期所有课程全英文授课。
数学营费用
美国营的费用为5000美金,亚洲营的费用与美国营的费用基本一致。费用包含了整个营期的学费和食宿费用。罗斯训练营是非营利的项目,并且为需要帮助的学生设置了助学金;训练营的运行主要依靠赞助,收取的费用主要用于老师工资和学生食宿。
疫情影响下的罗斯训练营
由于新冠疫情的影响,原定于2020年暑期在中国举办的亚洲营已取消;而2020美国营训练改为线上进行,时间为2020年6月28日至8月7日,费用降为1000美金。
往期学生体验
姚同学
2011年学员丨南京外国语学校 ,入读耶鲁大学(全奖)
“在高二暑假前申请了一个美国的数学夏令营,这个选拔性很强的夏令营强调个人的独立思考,而不是同学间的相互竞争。在这之前,我仔细研读了班上数学达人所推荐的书目, 做了一些准备,但是这个夏令营的困难程度还是超出了我的想象。夏令营中只有我和一个西 班牙人是国际生。为了防止分心,营员们都不允许携带电脑。每天虽然只有一个小时的讲课, 但是剩余的时间都是用来独立思考数学题的。每一道题都需要写出完整的解题报告,如果方 法不正确,或者证明不严密,都会被退回来重做。这在旁人看来也许像是炼狱般的两个月里, 我却凭借对数学的热爱,做到了乐在其中,对数学的兴趣不减反增。” |
马同学
2012年学员丨南京外国语学校,入读哈佛大学(全奖)
“暑假参加了一个叫做 Ross 数论夏令营, 每天一小时的课, 剩下全部用来独立思考题目。六周时间,不给带电脑一直在做数论,模拟了 200 年的数论发展史,一定要做完一个成套题 目才能做下一个。当六周结束的时候,学到的东西远远超乎想象。” |
陈同学
2013年学员丨南京外国语学校,入读麻省理工学院
“高二升高三的暑假,我在美国的暑期学校项目里重新认识了数学。以前接触的数学毕 竟还是以竞赛为主,我们会使用各种各样的定理去解决非常复杂的奥数题,却并不能够保证 真正理解每一道定理的由来。而在这个项目里,我们学会了知其然更知其所以然,从基础的 开始,思考每一条定理的缘由。很多在小学生看来是天经地义的等式都被画上了一个个问号,为什么 0 不能等于 1?为什么一个数不是奇数就是偶数?正是在最为严格的证明下,我们在离开夏校的时候学到了的竞赛时并没有接触到的东西,从最基础的定义建立起了属于自己的数论系统。这些经历让我明白,要搭建起数学的琼楼玉宇,我们就要做到踏实、缜密地搭建起它的一砖一瓦。” |
往届学生本科申请录取统计
2019年部分录取统计
学校 | 人数 |
哈佛大学 | 1 |
麻省理工学院 | 1 |
宾夕法尼亚大学 | 1 |
康奈尔大学 | 1 |
加州大学洛杉矶分校 | 6 |
南加州大学 | 1 |
剑桥大学 | 10 |
帝国理工大学 | 1 |
耶鲁大学 | 1 |
斯坦福大学 | 2 |
杜克大学 | 3 |
莱斯大学 | 2 |
埃默里大学 | 1 |
卡内基梅隆大学 | 4 |
牛津大学 | 3 |
多伦多大学 | 1 |
哥伦比亚大学 | 1 |
芝加哥大学 | 4 |
达特茅斯学院 | 1 |
华盛顿圣路易斯大学 | 1 |
加州大学伯克利分校 | 2 |
佐治亚理工学院 | 6 |
伦敦政治经济学院 | 2 |
滑铁卢大学 | 1 |
2019年部分录取统计
学校 | 人数 |
普林斯顿大学 | 1 |
哥伦比亚大学 | 1 |
西北大学 | 1 |
莱斯大学 | 2 |
卡内基梅隆大学 | 8 |
加州大学圣巴巴拉分校 | 5 |
剑桥大学 | 2 |
哈佛大学 | 1 |
斯坦福大学 | 1 |
达特茅斯学院 | 1 |
埃默里大学 | 1 |
纽约大学 | 1 |
布兰戴斯大学 | 1 |
牛津大学 | 3 |
芝加哥大学 | 4 |
杜克大学 | 2 |
康奈尔大学 | 3 |
加州大学伯克利分校 | 5 |
北卡罗来纳大学教堂山分校 | 2 |
佐治亚理工学院 | 1 |
帝国理工大学 | 3 |
ONE
TWO
THREE
FOUR